A Vacuolar-Type H+-ATPase in a Nonvacuolar Organelle Is Required for the Sorting of Soluble Vacuolar Protein Precursors in Tobacco Cells.

نویسندگان

  • K. Matsuoka
  • T. Higuchi
  • M. Maeshima
  • K. Nakamura
چکیده

In plant cells, vacuolar matrix proteins are separated from the secretory proteins at the Golgi complex for transport to the vacuoles. To investigate the involvement of vacuolar-type ATPase (V-ATPase) in the vacuolar targeting of soluble proteins, we analyzed the effects of bafilomycin A1 and concanamycin A on the transport of vacuolar protein precursors in tobacco cells. Low concentrations of these inhibitors caused the missorting of several vacuolar protein precursors; sorting was more sensitive to concanamycin A than to bafilomycin A1. Secretion of soluble proteins from tobacco cells was also inhibited by bafilomycin A1 and concanamycin A. We next analyzed the subcellular localization of V-ATPase. V-ATPase was found in a wide variety of endomembrane organelles. Both ATPase activity and ATP-dependent proton-pumping activity in the Golgi-enriched fraction were more sensitive to concanamycin A than to bafilomycin A1, whereas these activities in the tonoplast fraction were almost equally sensitive to both reagents. Our observations indicate that the V-ATPase in the organelle that was recovered in the Golgi-enriched fraction is required for the transport of vacuolar protein precursors and that this V-ATPase is distinguishable from the tonoplast-associated V-ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins

Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal)...

متن کامل

Protein sorting in yeast: the role of the vacuolar proton-translocating ATPase.

We are investigating the physiological roles of organelle acidification in yeast by two different approaches. First, we have identified two mutants which are defective in acidification of the yeast lysosome-like vacuole from among a collection of mutants which mis-sort soluble vacuolar proteins to the cell surface. These mutants have been helpful in identifying other cellular functions linked t...

متن کامل

An MBoC Favorite: Morphological classification of the yeast vacuolar protein-sorting mutants: evidence for a prevacuolar compartment in class E vps mutants

The collection of vacuolar protein sorting mutants (vps mutants) in Saccharomyces cerevisiae comprises of 41 complementation groups. The vacuoles in these mutant strains were examined using immunofluorescence microscopy. Most of the vps mutants were found to possess vacuolar morphologies that differed significantly from wild-type vacuoles. Furthermore, mutants representing independent vps compl...

متن کامل

Mutations in the yeast vacuolar ATPase result in the mislocalization of vacuolar proteins.

The vacuolar ATPase of the yeast Saccharomyces cerevisiae acidifies the vacuolar lumen and generates an electrochemical gradient across the vacuole membrane. We have investigated the role of compartment acidification of the vacuolar system in the sorting of vacuolar proteins. Strains with chromosomal disruptions of genes (delta vat) encoding the A (69 x 10(3) M(r)), B (57 x 10(3) M(r)) or c (16...

متن کامل

CONTINUOUS VASCULAR RING (COV1) is a trans-Golgi network-localized membrane protein required for Golgi morphology and vacuolar protein sorting.

The trans-Golgi network (TGN) is a tubular-vesicular organelle that matures from the trans cisternae of the Golgi apparatus. In plants, the TGN functions as a central hub for three trafficking pathways: the secretory pathway, the vacuolar trafficking pathway and the endocytic pathway. Here, we describe a novel TGN-localized membrane protein, CONTINUOUS VASCULAR RING (COV1), that is crucial for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1997